
1

Development Standards & Practices Used
● The IGDA Crediting Standards Guide. This standard will help us to officially credit

all contributors effectively.
● The IGDA Crunch, Unsustainable Work, and Management Abuse Standard. This

standard lays out how to avoid unsustainable or excessive working practices, to
better respect group members.

● Much of our project will use C#, so we will commit to Microsoft’s .NET C# Coding
Conventions. This will help us maintain code-style consistency while we
collaborate.

Summary of Requirements
● Functional:

○ The Player will write scripts and save them.
○ The Player will browse their saved scripts and choose to edit them.
○ Scripts will interact with puzzles through a predetermined api.
○ The Player will advance through the game by solving puzzles.
○ Some of the puzzles will be optional. These will typically be more difficult

than normal puzzles.
○ The Player’s progress will be saved between play sessions.
○ The game will be playable on OSX, Windows, and Linux-based operating

systems.
● Qualitative

○ The game should be fun to play.
● Resource:

○ The game should be pretty lightweight to run.
○ It should achieve 60 frames per second when running on the minimum

specs.
○ Min Specs:

■ AMD A10 5800k
■ 4G RAM
■ Radeon HD 7660D iGPU
■ 10 Gigabytes storage

● Economic:
○ Casters & Coders will always be free and open source.
○ We will use free and self-made assets only.

2

https://igda.org/resources-archive/crediting-standards-guide-ver-9-2-en-jp-2014/
https://igda.org/resourcelibrary/crunch-unsustainable-work-and-management-abuse-definitions-and-standards/
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions

● UI:
○ The game should be highly accessible.
○ We will choose colors which are friendly to color-blindness.
○ It will be possible to play the game with only a keyboard, although mouse

controls will also be available.
● Stretch Goals (If possible within our time frame):

○ The Player will be able to import previously written scripts and call
functions from them.

○ There will be multiple save files.
○ The game will be playable in a web browser.
○ The game will support multiple scripting languages.

Applicable Courses from Iowa State University Curriculum
● SE 309: Software Development Practices
● SE 319: Construction of User Interfaces
● SE 329: Software Project Management
● SE 339: Software Architecture and Design

New Skills/Knowledge acquired that was not taught in courses
List all new skills/knowledge that your team acquired which was not part of your Iowa
State curriculum in order to complete this project.

- Knowledge of the Godot game engine
- Combining multiple programming languages in one monolithic executable
- Video game design

3

Table of Contents
1 Team 7

1.1 TEAM MEMBERS 7

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT 7

1.3 SKILL SETS COVERED BY THE TEAM 7

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM 8

1.5 INITIAL PROJECT MANAGEMENT ROLES 8

2 Introduction 8

2.1 PROBLEM STATEMENT 8

2.2 REQUIREMENTS & CONSTRAINTS 9

2.3 ENGINEERING STANDARDS 9

2.4 INTENDED USERS AND USES 10

3 Project Plan 10

3.1 Project Management/Tracking Procedures 10

3.2 Task Decomposition 11

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 12

3.4 Project Timeline/Schedule 13

3.5 Risks And Risk Management/Mitigation 14

3.6 Personnel Effort Requirements 15

3.7 Other Resource Requirements 18

4 Design 19

4.1 Design Context 19

4.1.1 Broader Context 19

4.1.2 User Needs 20

4.1.3 Prior Work/Solutions 20

4.1.4 Technical Complexity 21

4.2 Design Exploration 21

4.2.1 Design Decisions 21

4.2.2 Ideation 23

4.2.3 Decision-Making and Trade-Off 24

4

4.3 Proposed Design 25

4.3.1 Design Visual and Description 25

4.3.2 Functionality 26

4.3.3 Areas of Concern and Development 27

4.4 Technology Considerations 29

4.5 Design Analysis 29

4.6 Design Plan 29

5 Testing 30

5.1 Unit Testing 30

5.2 Interface Testing 30

5.3 Integration Testing 31

5.4 System Testing 31

5.5 Regression Testing 31

5.6 Acceptance Testing 31

5.7 Security Testing 32

5.8 Results 32

6 Implementation 32

7 Professionalism 32

7.1 Areas of Responsibility 32

7.2 Project Specific Professional Responsibility Areas 35

7.3 Most Applicable Professional Responsibility Area 36

8 Closing Material 37

8.1 Discussion 37

8.2 Conclusion 37

8.3 References 37

8.4 Appendices 38

8.5 Team Contract 38

5

List of figures
1 Gantt Chart 14

2 Work Estimate Breakdown 18

3 Design in a Broader Context 19

4 User Needs 20

5 2D Dungeon Environment 25

6 Script Editor Mockup 26

7 Basic Gameplay Loop 27

8 Proposed Godot Node Graph 30

9 Areas of Responsibility 34

6

1 Team

1.1 TEAM MEMBERS

- Branden Butler
- Brennan Seymour
- Edward Dao
- Wenqin Wu
- Theng Wei Lwe
- Max Bromet

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT

- Software development/ object-oriented programming knowledge
- Experience in multi-language programming
- Experience in or ability to learn video game design
- Experience in UI design
- Puzzle-creation skills
- Story writing experience
- Artistry skills

1.3 SKILL SETS COVERED BY THE TEAM

- Software development/ object-oriented programming knowledge
- Branden Butler
- Brennan Seymour
- Max Bromet
- Wenqin Wu
- Theng Wei Lwe
- Edward Dao

- Experience in multi-language programming
- Branden Butler
- Theng Wei Lwe

- Experience in video game design
- Branden Butler
- Brennan Seymour
- Max Bromet
- Wenqin Wu

- Experience in UI design
- Brennan Seymour
- Theng Wei Lwe

- Puzzle-creation skills
- Max Bromet
- Edward Dao
- Brennan Seymour

7

- Story writing experience
- Theng Wei Lwe
- Wenqin Wu

- Artistry skills
- Edward Dao

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

We will be aligning with the Agile project management style.

1.5 INITIAL PROJECT MANAGEMENT ROLES

Our group is split into several teams, listed below with their team leaders and members.
There is some overlap of members between teams as the workload is not evenly split
among the four teams.

- Language Embedding
- Team Lead: Branden Butler
- Other Members: Brennan Seymour

- Puzzle Design and Concept Art
- Team Lead: Max Bromet
- Other Members: Edward Dao

- Storyline
- Team Lead: Wenqin Wu
- Other Members: Theng Wei Lwe

- Game Environment and Logic
- Team Lead: Theng Wei Lwe
- Other Members: Edward Dao

- User Interfaces
- Team Lead: Brennan Seymour
- Other Members: Theng Wei Lwe, Max Bromet

2 Introduction

2.1 PROBLEM STATEMENT

Our project aims to solve the problem of making programming more accessible and
engaging for students. Traditional methods of teaching programming can be dry and
difficult to understand, which can discourage students from pursuing this valuable skill. By
gamifying the process and creating a fun and interactive way to learn programming, our
project can help bridge this gap and make programming more approachable and enjoyable
for students. This can help increase interest in STEM fields and prepare students for future
careers in technology.

8

2.2 REQUIREMENTS & CONSTRAINTS

The requirements of our projects are listed below as follows:

● Functional:
○ The Player will write scripts and save them.
○ The Player will browse their saved scripts and edit them.
○ Scripts will interact with puzzles through a predetermined API.
○ The Player will advance through the game by solving puzzles.
○ Some of the puzzles will be optional. These will typically be more difficult

than normal puzzles.
○ The Player’s progress will be saved automatically between play sessions.
○ The game will be playable on OSX, Windows, and Linux-based operating

systems.
● Qualitative

○ The game should be fun to play.
● Resource:

○ The game should be pretty lightweight to run.
○ It should achieve 60 frames per second when running on the minimum

specs.
○ Min Specs:

■ AMD A10 5800k
■ 4G RAM
■ Radeon HD 7660D iGPU
■ 10 Gigabytes storage

● Economic:
○ Casters & Coders will always be free and open source.
○ We will use free and self-made assets only.

● UI:
○ The game should be highly accessible.
○ We will choose colors that are friendly to color blindness.
○ It will be possible to play the game with only a keyboard, although mouse

controls will also be available.
● Stretch Goals (If possible within our time frame):

○ The Player will be able to import previously written scripts and call
functions from them.

○ There will be multiple save files.
○ The game will be playable in a web browser.
○ The game will support multiple scripting languages.

2.3 ENGINEERING STANDARDS

The Engineering standards that are like to apply to our project are as follows:

9

● The IGDA Crediting Standards Guide. This standard will help us to officially credit
all contributors effectively.

● The IGDA Crunch, Unsustainable Work, and Management Abuse Standard. This
standard lays out how to avoid unsustainable or excessive working practices, to
better respect group members.

● Much of our project will use C#, so we will commit to Microsoft’s .NET C# Coding
Conventions. This will help us maintain code-style consistency while we
collaborate.

2.4INTENDED USERS AND USES

Students: Students who are interested in learning programming can benefit from our
project as it offers a fun and engaging way to learn the concepts. By making programming
accessible and enjoyable, more students may be encouraged to pursue careers in
technology and related fields.

Teachers: Teachers can use our project as a tool to supplement their traditional teaching
methods. By incorporating a game-based approach to learning programming, teachers can
help their students better understand the concepts and engage them in the learning
process.

Educational institutions: Educational institutions such as schools and universities can
benefit from our project as it offers a new and innovative way to teach programming. By
providing access to our game, educational institutions can enhance their curriculum and
better prepare their students for future careers in technology.

Tech Industry: The tech industry can benefit from your project by having a more diverse
pool of talent with programming skills. By making programming more approachable and
enjoyable, your project can help increase interest in the field and ultimately contribute to
the growth and innovation of the industry.

Non-Technical Office Workers: Someone who works in an office may be able to use
scripting languages to automate tasks or leverage existing tools to assist them in the
workplace. If they’re not already familiar with scripting, our game may provide a more
approachable way to learn it.

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

The team is expected to adhere to the agile project management style. Since the project is
a video game, we will be undergoing a lot of testing and debugging. There can also be
changes to the requirements such as adding a new feature late into development. With a

10

https://igda.org/resources-archive/crediting-standards-guide-ver-9-2-en-jp-2014/
https://igda.org/resourcelibrary/crunch-unsustainable-work-and-management-abuse-definitions-and-standards/
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions

team size of 6, this will help us to engage in highly parallel development, since teammates
can rapidly respond to changes made by another.

We plan on using GitHub and Discord to help keep track of progress done throughout
each member. Discord will be the main tool for communication whereas GitHub will be
primarily used for version control. We will also use markdown files in Github for the bulk
of our documentation.

3.2 TASK DECOMPOSITION

1. Engine and Scripting System
1.1. Prototype language embedding systems using a range of tools.
1.2. Select an engine, tool, and prototype to flesh out.
1.3. Design the API for scripting interaction.
1.4. Implement the scripting system to minimum viable product, enough for

puzzle development to begin with a stable API.
1.5. Flesh out the scripting system further, improving stability and adding

features.
2. Story, Environment Design, and Asset Creation

2.1. Create a storyline to go with the game
2.2. Create rooms/map for the game
2.3. Write dialogue for character interactions
2.4. Create or source assets for the game

3. Puzzle design
3.1. Design a framework for describing puzzles and fitting them into a logical

order of increasing complexity and introducing concepts.
3.2. Decide on a “curriculum” for the order of concepts to be taught.
3.3. Design “Introductory” puzzles for each concept, teaching and introducing.
3.4. Design “Exploratory” puzzles for each concept, expanding and fleshing out.
3.5. Design “Challenge” puzzles, which will be optional in-game, and

lower-priority for development.
3.6. Refine designs and gather feedback.

4. Mechanics of the Game and Level Implementation
4.1. Create a player controller with basic movement.
4.2. Design a tileset-based environment which can be repurposed for any

puzzle.
4.3. Implement interaction mechanics. (interacting with game objects)
4.4. Implement a designed puzzle, creating reusable systems and integrating

the scripting system. This is dependent on task 1.5.
4.5. Continue implementing puzzles.
4.6. Apply assets, replacing “programmer art”

11

5. User Interfaces
5.1. Develop a style guide to help reinforce consistent UI and to accommodate

keyboard-based navigation.
5.2. Create the in-game IDE as a minimum viable product, so that it can be

used for puzzle development as early as possible.
5.3. Develop a basic system for talking to NPCs and inspecting objects in the

world. (ideally driven by text files)
5.4. Develop a main menu, settings menu, and pause menu.
5.5. Flesh out the in-game IDE, including some form of highlighting &

completion.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Milestones:

1. Engine and Scripting System
1.1. Engine choice locked in
1.2. Scripting language locked in with a hello world example
1.3. Functional script saving and loading
1.4. Functional in-game script editing via basic text editor
1.5. Script API is formally defined in documentation
1.6. Script API is implemented and integrated with the host engine

2. Story, Environment Design, and Asset Creation
2.1. Complete storyline
2.2. Completed map design consisting of multiple rooms adjacent to each other
2.3. Designs of NPCs, player characters, and rooms fully implemented

3. Puzzle design
3.1. Learning pathway completed (order of programming concepts to be taught)
3.2. Introductory, Exploratory, and Challenging puzzles designed for each

concept.
4. Mechanics of the Game and Level Implementation

4.1. Fully functional player character
4.2. Interactable objects/characters implemented
4.3. Puzzles implemented to be solved using chosen scripting language

5. User Interfaces
5.1. Fully functional user interface including menus, chat bubbles, and player

information
5.2. In-game IDE for user input with basic highlighting and code completion.

12

3.4 PROJECT TIMELINE/SCHEDULE

This chart assumes a sixteen-week timeline and 1-week sprints. Subtasks which have strict
dependencies on other subtasks indicate these with a task number in parentheses. Some
tasks are expected to be finished before others, in which case team members will be
reassigned to help with other tasks in progress.

Note that this chart is not a steadfast plan but a starting point to work off of.

Task/Subtask
Sprint

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Engine and Scripting System

1.1 Prototype scripting systems X X

1.2 Choose engine, tool, and
language

X

1.3 Design scripting API X

1.4 Scripting MVP X X

1.5 Improvements X X X X

Story, Environment Design, and
Asset Creation

2.1 Storyline X X X

2.2 Game Map (3.2) X X X

2.3 Dialogue X X X X

2.4 Source assets X X X

Puzzle Design

3.1 Puzzle framework X X

3.2 Curriculum X X

3.3 Introductory puzzles X X X

3.4 Exploratory puzzles X X X

3.5 Challenge puzzles X X X

13

3.6 User feedback and polish X X X X X X

Mechanics

4.1 Player Controller X X

4.2 Tileset environment X X

4.3 Interactable objects X X X

4.4 Single puzzle & systems
(1.4)(5.2)

X X X

4.5 Additional puzzles X X X X X X X X

User Interfaces

5.1 Style Guide X

5.2 IDE MVP X X X

5.3 Dialogue system X X X X

5.4 Game menus X X X X

5.5 IDE Polish X X X X

Figure 1: Gantt Chart

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

We have identified potential risks for each task along with potential mitigation strategies,
listed below:

1. Engine and Scripting System
a. (1.2) Select an engine, tool, and prototype to flesh out.

i. (risk: 0.1) Our decision here could prove to be unworkable further
down the line, requiring us to switch systems and possibly engine.
Our mitigation strategy for this is two-pronged. First, we intend to
design an API for interacting with our scripting system which is
generic enough to fit any scripting system with little effort (see 1.3).
Second, we have begun preliminary investigations into this topic
early, evaluating a variety of tools as a part of research. We believe
that this head-start will help us to more surely make the right
decision here. Because of these strategies, the risk is reduced.

2. Story, Environment Design, and Asset Creation
a. (2.1) Create a storyline to go with the game

14

i. (risk: 0.5) Once gameplay and puzzles are designed, the story may
not fit well to the game developed. However, we have lots of extra
free time scheduled for this set of tasks, so additional work can be
put into reworking the story. This should be dealt with before
significant work is done for task 2.4, so that limited refactoring is
necessary.

b. (2.4) Create or source assets for the game
i. (risk: 0.2) We may not be able to find suitable assets. This is a fairly

acceptable situation however. Our requirements do not include
artistic cohesion so we can reasonably repurpose ill-fitting assets.

3. Puzzle design
a. We do not anticipate any significant risks associated with puzzle design.

4. Mechanics of the Game and Level Implementation
a. (4.4) Implement a designed puzzle, creating reusable systems and

integrating the scripting system.
i. (risk 0.6) We may discover an issue in existing game systems, the

scripting system, or the in-game IDE which needs to be addressed
before this task can be completed. This would create a significant
delay. Mitigating this risk, we believe that our agile framework will
help us to deal with such unexpected delays. Additionally, the
developer assigned to this task can spend their downtime assisting
with these unexpected squashing issues.

b. (4.5) Continue implementing puzzles.
i. (risk 0.7) We may not have time to implement all the puzzles which

we design. In fact, this is fairly likely. To mitigate this, we will focus
on developing Introductory puzzles first, and move forwards to
Exploratory and Challenge puzzles afterwards to flesh out the game.
This way, the later content is less fundamental to our game and can
be cut with less consequences.

5. User Interfaces
a. We do not anticipate any significant risks associated with user interfaces.

3.6 PERSONNEL EFFORT REQUIREMENTS

Task/Subtask Hours Context

Engine and Scripting System

1.1 Prototype scripting systems 18 Preliminary work on these is already done,
deflating time requirements.

1.2 Choose engine, tool, and 2 After thorough prototyping this should be a

15

language thoughtful, but relatively easy decision.

1.3 Design scripting API 4 We will need to design the scripting API
carefully, as a lot of the project depends upon
it.

1.4 Scripting MVP 20 This is an important blocking-task, so it should
be prioritized.

1.5 Improvements 60 “Improvements” is sort of nebulous by design.
It includes bugfixes as well. This may well take
more or less than 60 hours.

Story, Environment Design, and
Asset Creation

2.1 Storyline 8 The storyline should start broad and become
more specific as gameplay elements
materialize. This task will be somewhat spread
out, and may take more than 8 hours because
of this.

2.2 Game Map (3.2) 16 The game map is a real logistical challenge,
especially as room layouts may change across
puzzle design and implementation.

2.3 Dialogue 24 Dialogue will be very important to our game -
it is the main source of guidance for the player.
As such, there should be a lot of it, and it
should be good.

2.4 Source assets 8 We will need a lot of assets to fit the scope of
our game. Finding fitting ones for free could
take some involved searching.

Puzzle Design

3.1 Puzzle framework 8 The puzzle framework is important
preliminary work. It will help better define
bounds in which all puzzles will work. This
design document should be thorough, though
it may be modified later.

3.2 Curriculum 16 The curriculum is the most essential heart of
our game, and while it is fairly straightforward,
it will involve a lot of detail.

16

3.3 Introductory puzzles 48 Introductory puzzles will take the longest as
we will have to come up with novel, effective
puzzles to teach every concept in the
curriculum.

3.4 Exploratory puzzles 30 These will reuse gameplay elements from the
introductory puzzles, adding some complexity
that tests the player’s understanding. Because
the gameplay elements will already exist,
extending them will be more straightforward.

3.5 Challenge puzzles 24 Challenge puzzles are an extension of the
exploratory puzzles. They will require less work
for two reasons. First, they will be optional, so
if one of these is too hard, that’s acceptable.
Additionally, these will be the last to be
implemented, so time constraints will likely
mean that we won’t be able to implement very
many.

3.6 User feedback and polish 40 This is an open ended task, but is pretty
involved. It involves playtesting levels and
redesigning puzzles based on player feedback.

Mechanics

4.1 Player Controller 4 This is a straightforward task with many
relevant guides and resources.

4.2 Tileset environment 6 This is a little more involved than the previous,
but is also well documented.

4.3 Interactable objects 8 This system will be somewhat simple, allowing
the player to interact with objects in the
environment in a generic way. However, there
is little built-in engine support for this feature,
so it will have to be designed and crafted by
hand.

4.4 Single puzzle & systems
(1.4)(5.2)

12 A single puzzle is not large, and if our
supporting systems work well then this should
go smoothly. However, we are likely to uncover
bugs in those systems in this task. Additionally,
this will involve creating resources that can be
reused for all subsequent puzzles.

4.5 Additional puzzles 100 This task is open ended. Depending on the

17

scope and scale of our puzzle designs, it could
go on for much longer. Several developers will
be able to work in parallel on this task, which
should make it achievable.

User Interfaces

5.1 Style Guide 6 The style guide should be created thoroughly,
and will accelerate all future UI work by
providing a helpful design framework.

5.2 IDE MVP 8 The IDE MVP will take significant work, but
being a minimum viable product, it can be
extremely simple at this stage.

5.3 Dialogue system 24 The dialogue system should be very robust to
accommodate the amount and quality of
dialogue. It will likely take involved work.

5.4 Game menus 8 The game menus will be simple. They present a
decent amount of work with low complexity.
The most difficult part of this task will be full
keyboard navigation.

5.5 IDE Polish 32 The IDE can be polished to a very high degree -
look at modern code editors. However we only
really need syntax highlighting and an
“available APIs” bank, as well as a rudimentary
filesystem for saving/loading scripts. Code
completions would be nice but are optional.

Figure 2: Work-Estimate Breakdown

3.7 OTHER RESOURCE REQUIREMENTS

1. Free-to-use external sprites, tile maps, art to complement the game design and
theme

2. Tools for version control
a. GitHub
b. We’ll mirror to the class GitLab for evaluation

3. Tools for communication
a. Discord
b. GitHub

4. ISU students to fill out surveys and test early versions of the product
5. Old computer to be used for testing the game on low end hardware
6. Computers to develop on

18

7. Game engine for development, and libraries for language embedding.

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

Area Description Examples

Public health,
safety, and
welfare

By providing an educational resource, we
are directly enriching public welfare.

We can take our players’ welfare into
account by doing things such as giving
warnings if there are going to be flashing
lights.

Players who engage with the game
will learn valuable concepts which
can be applied in personal and
professional settings.

Global, cultural,
and social

Our project is not directed towards any
specific cultural group. However, due to
time and resource limitations the game
will be presented entirely in English,
which might exclude non-English
speaking people.

Our project will not be culturally
charged or controversy-provoking
in any way.

Environmental What environmental impact might your
project have? This can include indirect
effects, such as deforestation or
unsustainable practices related to
materials manufacture or procurement.

Beyond consuming electricity, this project
should not have a significant impact on
the environment. We can work to make
our game lightweight and optimized to
reduce power consumption

Increasing/decreasing energy
usage from nonrenewable sources,
increasing/decreasing
usage/production of
non-recyclable materials

We will work to make Casters and
Coders as efficient as possible to
cut down on electricity use.

Economic What economic impact might your
project have? This can include the
financial viability of your product within
your team or company, cost to consumers,
or broader economic effects on
communities, markets, nations, and other
groups.

Product needs to remain
affordable for target users,
product creates or diminishes
opportunities for economic
advancement, high development
cost creates risk for organization

Players who play this game will
learn key programming concepts,

19

Programming is a skillset that is in very
high demand in our modern world. By
teaching people how to code with our
game, we are helping our players broaden
their skill sets.

which will make it easier to go
learn more advanced concepts in
the future

Figure 3: Design in a Broader Context

4.1.2 User Needs

Group Needs

Prospective coders with no programming
experience

Gradual introduction to basic programming
concepts because they have no knowledge of any
of the core concepts needed. They will also need
clear “best practices” to avoid common pitfalls.

Curious beginner coders Introduction to somewhat more complex
concepts because they might already know the
basics and might be curious to learn more

Workers looking to augment their workflows The game to use a real language so they can easily
transition to real-world gains quickly

Figure 4: User Needs

4.1.3 Prior Work/Solutions

BitBurner <https://danielyxie.github.io/bitburner/>

A cyber hacking-themed video game primarily based around a text interface and 90’s-era
“hacker” aesthetics. The game involves the player using Javascript to “hack” in-game
businesses and accrue large sums of money. The primary shortcoming of this game is that
it does a poor job of teaching programming to those unfamiliar with it - it has two versions
of its scripting API with few explanations of the differences between them, and each
requires a significant amount of “magic” commands and boilerplate.. The text-based
method of interacting with most of the game can also be off-putting for most gamers, who
are generally used to point-and-click style GUIs. Our solution plans to slowly introduce
every core concept of programming without any boilerplate or “magic.” It will also include
a more traditional player character that moves around the screen, with a separate text
entry panel for the scripting component.

CodeCombat <https://codecombat.com/play/>

A fantasy puzzle game with an early 2000’s “flash game” aesthetic. Players write scripts to
control a character who must walk around a dungeon, avoid obstacles, and defeat enemies.
This game achieves all of our goals at a surface level, by integrating gameplay puzzles with

20

https://danielyxie.github.io/bitburner/
https://danielyxie.github.io/bitburner/
https://codecombat.com/play/
https://codecombat.com/play/

coding concepts, but we feel that it fails to be engaging on any deeper level. The game’s
levels are highly separated, giving the player little sense of investment, there is little to no
plot, and the game is very resource-intensive. Additionally, the game costs money to play,
making it less accessible to players.

4.1.4 Technical Complexity
1. The project's design contains multiple components that must be divided among

several team members.
a. Scripting Language Embedding - Technology to embed an existing

language into the game to parse code written by the users. Requires
extensive knowledge of game engines, programming languages, and
software engineering.

b. Godot/Unity Scripts - Component of game that is required to parse game
logic and user input in real-time. Defines behavior of components in-game
and behind the scenes. Requires extensive knowledge of game engine, C
programming, and game physics/math.

c. Puzzle and Storyline - The main content and gameplay that users will be
interacting with. Contains mind-stimulating information and mechanics to
engage users. Requires extensive skill in high-level order game design,
technical problem-solving skills, and conceptual understanding of various
genres and styles.

2. The problem will require the team to work together using a version control tool
such as GitLab. This matches the current industry standard of utilizing
collaboration tools for software development such as GitHub to maintain an
up-to-date environment for software development.

3. The problem scope requires the team to design a completely original and new
product from scratch. This is common in the software industry as companies are
always looking to create new and innovative products for their consumers. The
team is challenged in the same way to analyze the problems, brainstorm
solutions/ideas, and execute the desired steps.

4. The team will be adhering to an agile development methodology which is
commonly practiced in multiple software companies. Each team member will be
given individual tasks that have to be completed within a specific time limit to
reach a milestone. Development of the project will cycle often around debugging
and testing to ensure compliance to the requirements and desired output.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

Game Style

We looked at a variety of styles for our game to follow. Here are the most notable
categorical decisions.

21

Realtime or Time-Controlled

In a real-time system, the scripts being written must be polled or registered to callbacks;
this adds a layer of complexity to scripting but also grounds it more in the game world. It
lets players tangibly interact with their scripts to a greater degree.

In a time-controlled system, more typical programming can be done. Here, a
player-written script would be called once and operate until completion, then terminate.
This allows a more controlled environment with more typical programming conventions
but reduces a player’s ability to interact with their script after writing it.

We decided to go with a realtime system, but design some puzzles in a time-controlled
way by letting them register a callback which is run once by an in-world button, or other
similar activation method.

Action or Puzzle

In an Action based game, players’ scripts would control some gameplay element which is
used dynamically and combatively. The most straightforward application of this is that of a
typical RPG, but those games rely on number-creep for progression, which programs can
achieve arbitrarily. Alternatively, we could gate progression by requiring more and more
complex script behaviors, but at that point you’re writing a puzzle.

In a Puzzle based game, players’ scripts control gameplay elements in the world, and
scripts must be able to perform certain tasks to overcome contrived puzzle scenarios. This
style of game gives us far more control over how players engage with programming
concepts, so that we can gate their progress with finer-grained programming concepts.

We decided to go mainly with a Puzzle based style of gameplay. We think that it best suits
our needs as an educational game. However, we are still interested in having highly
physical puzzles which require some degree of player interaction, or possibly skill.

Puzzle Formats

We will need a fairly standard format for our puzzles to streamline development and to
keep a consistent player experience. We have decided on two styles of puzzle to include.

First, we will have test-based puzzles. These are more conventional and constrained,
running a battery of tests against the player’s script and judging success based on their
outcomes.

The second format will be based in world traversal. In this style of puzzle, the player’s
script will control a number of game elements through an exposed API, and their success
will be measured by whether they can get to the room’s exit. Obstacles in these puzzles
will be situations like a bottomless pit to cross, a trap to outmaneuver, or a monster to
defeat.

22

4.2.2 Ideation

One design decision that we spent a lot of time considering options for was the choice of
user-facing scripting language. We identified multiple options based on the feasibility of
integration with the engine and ease of use for the player. The options we considered and
researched are listed below:

● Python: This language provided some of the easiest binding capabilities to our
engine choices and is also well-known among the programmer community for
being easy to learn. We considered its odd scoping syntax, whitespace-based,
against our personal preference for braces-based and determined the trade-off was
insignificant for its ease of use. We also discussed potential pitfalls around its type
system, which is duck-typed and dynamic-typed, and determined that while a
statically typed language may remove some error cases, it also removes some of the
ease of use for brand-new users. Being interpreted means we also did not need to
worry about embedding a compiler toolchain.

● Typescript: We found that TypeScript was very easy to use as well, and its static
type system was easy enough to understand for most new users. We also theorized
that static typing would allow our embedded editor to provide hints and
autocomplete for the user to assist them. The compiler was able to be embedded
with ease as well. We were, however, wary about using this language because the
compiler adds additional complexity. On Unity, we used the Clearscript package,
which we found introduced a significant penalty for crossing the boundary
between the engine and embedded scripting.

● Lua: This was the language we found most easy to embed in the engines available
to us. We did find that its syntax was a little off-putting, 1-indexing could lead to
problems when transitioning to other languages, and its reliance on
metaprogramming to emulate other language features could lead to extreme
confusion for beginning programmers.

● Kotlin: Kotlin was the hardest language to embed in our engines. In Unity, we
attempted to use the IKVM project to run JVM code inside Unity’s .NET
environment. This allowed us to run a simple Kotlin hello-world program, but
attempting to use the experimental scripting library caused the entire engine to
crash. Godot was a bit nicer but still had problems, there’s a community-driven
Kotlin language binding, but it’s in Alpha state. We were able to get a hello-world
program working with minimal effort, but once again, the scripting library caused
issues. We have been in contact with the developers of this language binding and
believe we have a fix for this issue, so research on Kotlin is still ongoing.

● Webassembly: While not a language in itself, Webassembly opens the doors to a
much larger pool of languages to integrate and would provide us a single interface
to easily swap between languages. We were able to integrate Wasmtime into Unity
but found that the native library nature of Wasmtime could pose problems for a

23

cross-platform game. We also decided that embedding a full compiler toolchain
that compiles to Webassembly could be potentially problematic.

4.2.3 Decision-Making and Trade-Off

We evaluated all of our potential language options with respect to multiple criteria. The
most important criterion was that the language could be embedded in our chosen engine,
as looking at languages that weren’t feasible in the first place would just be a waste of time.
The second most important criterion was the ease of learning from the perspective of a
new programmer. We evaluated this criterion against several subcriteria: lack of boilerplate
or “magic” ceremony functions or constructs, readability of code, conciseness of code, and
overall syntax “feel.” We also evaluated each language with respect to its feature set,
specifically its inclusion of object-oriented and functional paradigms as well as more
advanced features like comprehensions or operator overloading.

Our current choice is Python. It satisfies most of our criteria for the chosen language. It is
easily embeddable via IronPython, it does not require any special ceremony for simple
scripts, and most beginning programmers find it easy to read. Python also includes
support for both object-oriented and functional programming paradigms. The drawbacks
of our other options are listed above.

24

4.3 PROPOSED DESIGN

4.3.1 Design Visual and Description

Figure 5: 2D Dungeon Environment

The current design approach will be a 2D, top-down, sprite video game that users can
control using their keyboards. The approach of the game design is having a sprite
character that the users will move around a map full of rooms that are adjacent to one
another. Users will be able to interact with the environment to complete puzzles and earn
progress throughout the game.

25

Figure 6: Script Editor Mockup

The player will enter a script-editing menu to write a script for any given task, which will
display all the available API elements which the script can interact with. When the script is
run, this window will close so that the player can watch its effects play out in the game
world.

4.3.2 Functionality

We intend to have the player load up the game on their computer, and then enter into the
gameplay loop. The gameplay loop will consist of the player exploring, finding puzzles,
solving said puzzles, and then continuing on with their exploration. The puzzles will be
coding puzzles, and the player will have to learn new programming concepts to solve said
puzzles. By exploring, the player can find information that teaches them about key
programming concepts.

26

Figure 7: Basic Gameplay Loop

The current design requires users to completely master a concept before moving on to
more complicated concepts. These allow the users to build upon the strong basic
fundamentals and have more challenging/advanced puzzles as they progress. This also
prevents users from getting stuck on a particular phase with a lack of basic understanding.
This allows the project to meet its functional requirements.

The design also allows the game to continue being fun and stimulating, as desired in the
non-functional requirements. By introducing new concepts and harder stages, users will be
inclined to put in more effort, making it more rewarding and fun.

4.3.3 Areas of Concern and Development

Our primary concern is ensuring the scripting system works and teaches the users how to
program in a progressive and slow manner. The scripting is core to the game's purpose,
and if it isn’t functional or is too difficult for a beginner to use, our game has failed at that
purpose.

This concern breaks down into two issues: the technical implementation of the scripting
engine must be performant, robust, and easy to develop with, and the puzzles themselves
must be designed carefully to be intuitive and teach concepts well.

To address the technical side, we will spend considerable resources on the scripting system
and UI. We plan to test as much of the system as possible and provide UI mockups to
external parties for feedback.

As far as design, all we can do is come up with a lot of ideas and get plenty of player
feedback during the process to figure out what works and what doesn’t as early as possible.

27

4.4 TECHNOLOGY CONSIDERATIONS

The primary technologies that we needed to consider were our choice of user-facing
scripting language and our choice of game engine. Our options, research notes, and
conclusions for each are listed below.

4.4.1 Scripting language

We need to select an appropriate scripting language to teach. We’ve considered a number
of possibilities depending on the approachability of each language and what tools are
available for embedding. Here are our findings for a variety of languages:

● Python
○ Very simple, easy-to-understand syntax for basic operations.
○ Good support for object-oriented concepts and patterns.
○ Good support for functional paradigms: lambda functions, higher-order

functions, currying.
○ Interpreted language, so we don’t need to worry about bundling a compiler.
○ Dynamic typing makes types often nebulous and introduces many potential

pitfalls for players.
○ IronPython interpreter allows embedding in .NET environments
○ Godot has a Python binding as well

● Kotlin
○ Nice succinct syntax, certainly less boilerplate-driven than Java.
○ Has great support for all popular programming paradigms.
○ Compiled language, which runs in the JVM. So we would have to bundle a

compiler and a JVM implementation.
○ Good Godot support, so if we chose Godot, there exists tooling to use

Kotlin.
○ We would need to leverage the scripting libraries to execute embedded

code, which are highly experimental and may not work as expected.
● Javascript

○ Great functional programming support.
○ Interpreted language, like Python.
○ Dynamic typing creates many pitfalls, especially with Javascript’s judicious

type coercion.
○ The prototype-based object system provides a poor introduction to

object-oriented programming.
○ Would require embedding a Javascript engine, like V8. Most engines we’ve

found are not reimplementations like IronPython is for Python but rather
wrap V8, and thus can introduce additional compilation complexity.

● Typescript
○ Fantastic, robust type system, fixing our main gripe with Javascript.

28

○ Requires a transpilation step, but transpilers exist in Javascript, so if we get
Javascript running, then Typescript support is nearly free.

● Lua
○ Approachable, lightweight syntax.
○ Highly unusual syntax, which would not translate well to other

programming paradigms.
○ Not widely applicable in real-world programming.
○ Poor support for object-oriented paradigms, emulated through Tables

which are a Lua-specific feature.

We’ve narrowed down our choices into two viable options: TypeScript and Python. Because
of TypeScript’s complex build tooling, we’ve decided to attempt to use Python first.

4.4.2 GAME ENGINE

● Unity
○ Most well-known engine, with lots of community support.
○ Plenty of tools for high-quality visual effects.
○ Uses an unusual skew of C#, which makes importing libraries painful.

● Godot
○ Still well known, also has a lot of community support.
○ Less support for high-budget effects.
○ Better support for 2d games.
○ Has a variety of language bindings, dramatically expanding our possibilities

for libraries.
○ The Node-based component system is more flexible than Unity’s

GameObject-based component system.
● Impact

○ Runs natively in-browser, sidestepping platform support.
○ Built on Javascript, which makes embedding Javascript and Typescript fairly

painless.
○ Niche, with limited tools and limited community support.
○ Less features than the other engines.

Currently, we are most likely to use Godot. We like its robust design, and having many
language bindings lets us use a wider variety of tools.

4.5 DESIGN ANALYSIS

We have not yet implemented our design.

4.6 DESIGN PLAN

Godot represents games as a collection of nodes organized in a graph. As part of planning
our design we created a node graph that fulfills our requirements.

29

Figure 8: Proposed Godot node graph

The node graph can be broken down into three primary sections: the player, the
environment, and the script execution system, flowing left to right in the above graph.
Each node communicates with others through signals, represented as simple arrows,
allowing a loose coupling between nodes. Each node may have children, represented in
this graph as composition arrows.

5 Testing

5.1 UNIT TESTING

We will be unit testing the user-facing scripting component. Thanks to using a real
language with an embedded engine design, we can split everything written in that
language into a separate sub-project and unit test it separately. This includes the API
between the scripting language and the game engine; the engine side will be emulated
using mocks.

We will also be unit-testing the host side of the interface API and the script manager
singleton via the Godot Unit Test (GUT) tool. Dispatch of commands to game objects will
be emulated during tests.

5.2 INTERFACE TESTING

● We will write interface tests to insure that the different game systems are
interacting correctly

30

○ This includes testing to insure things such as the spells the player codes
trigger the correct animations

○ This includes testing to insure things such as the inputs the player makes
give the correct outputs in the game

● We will test with accessibility filters to make sure that the game is accessible to
people with sensory impairments

○ We won’t have puzzles that are reliant on audio cues to solve so that people
with hearing impairments are able to play.

○ We will allow the player to add filters to the game to help with certain
kinds of color blindness

5.3 INTEGRATION TESTING

The most critical integration path is the path from a user script to a game object. A user
script command passes from the script engine to our script-side interface API, then to the
host-side API, to a script manager object, and finally dispatched to the affected game
object. This path will be tested thoroughly via the Godot Unit Testing (GUT) tool, and if
this path is faulty, the entire center point of the game becomes faulty.

5.4 SYSTEM TESTING

Since our project is a game with more subjective requirements than other projects might
have, our system testing will not be automated. Instead, we plan to send out development
builds to interested parties for game testing and feedback. Such a strategy mirrors what
“triple-A” game studios do with their own game testers. An advantage of having live testers
is that we can get subjective feedback on problems we never considered. Automated
testing has the fault that only potential problems thought of by the designers are tested,
and so they tend to ignore certain failure classes.

5.5 REGRESSION TESTING

The current strategy is to ensure that the current functionality works perfectly before
adding new features, which means we will always have a working version. The CI/CD
system connected to our repo will also perform a battery of tests on the embedded
scripting system for every pull request. We will only merge the pull request if all tests
succeed, protecting against regressions in our most critical system.

5.6 ACCEPTANCE TESTING

For functional requirements, we will make sure that our game meets the criteria that we
set out to meet. We will also write tests to ensure that the game’s systems interact
correctly.

31

For nonfunctional requirements we will be testing based on the criteria we wrote out at
the beginning. More specifically, we will profile the game on a lower end device having
exactly our stated minimum specs. We will require that the frame rate exceeds a lower
bound of 60 frames per second for 99% of the time when running on this machine.

To test functionality, we will use visual testing because all the functions are straightforward
and can be determined if it's working or not just by running the game.

Additionally, we intend to playtest the game. In the survey we sent out at the beginning of
the semester, we asked recipients if they would like to test an alpha build of the game.
Those that agreed will be sent copies of the game alongside a survey to rate their
satisfaction.

5.7 SECURITY TESTING

We are planning to make the game open-source and free to play, so security is not
applicable in this project. Additionally, this is a singleplayer game, so if players wish to
cheat, we hope only that they enjoy themselves while doing so.

5.8 RESULTS

We have not yet conducted testing.

6 Implementation
We have begun implementing the user-facing scripting system using the Python Godot
bindings through PluginScript. We are also simultaneously designing puzzles, writing the
overall storyline, and getting a shared project up and running. Soon we will be working on
prototypes for the environment and character.

7 Professionalism
This discussion is with respect to the paper titled “Contextualizing Professionalism in
Capstone Projects Using the IDEALS Professional Responsibility Assessment”,
International Journal of Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

7.1 AREAS OF RESPONSIBILITY

We selected the SE code of ethics.

SE:

1. Public. Software engineers shall act consistently with the public interest.

32

2. Client and employer. Software engineers shall act in a manner that is in the best
interests of their client and employer, consistent with the public interest.

3. Product. Software engineers shall ensure that their products and related modifications
meet the highest professional standards possible.

4. Judgment. Software engineers shall maintain integrity and independence in their
professional judgment.

5. Management. Software engineering managers and leaders shall subscribe to and
promote an ethical approach to the management of software development and
maintenance.

6. Profession. Software engineers shall advance the integrity and reputation of the
profession consistent with the public interest.

7. Colleagues. Software engineers shall be fair to and supportive of their colleagues.

8. Self. Software engineers shall participate in lifelong learning regarding October 1999 85
Software Engineering Code of Ethics and Professional Practice the practice of their
profession and shall promote an ethical approach to the practice of the profession.

Area of
Responsibility

Definition SE Code of Ethics Difference from
NSPE Code

Work Competence Perform work of
high quality,
integrity, timeliness,
and professional
competence.

Software engineers
shall ensure that
their products and
related
modifications meet
the highest
professional
standards possible.

NSPE focuses more
on a sense of honor
and loyalty to one’s
employer, whereas
the SE code focuses
more on
professionalism.

Financial
Responsibility

Deliver products
and services of
realizable value and
at reasonable costs

The 5th principle,
management, states
that
software engineers
shall make accurate
assessments on cost
on the project they
plan on working on.
They shall also keep
in mind their

NSPE doesn’t
directly address cost
management,
instead simply
asserting that an
engineer should be
loyal and
trustworthy. I think
that Financial
Responsibility is a

33

scheduling and
skills needed for the
work to reasonably
achieve to finish.

direct implication of
this.

Communication
Honesty

Report work
truthfully, without
deception, and
understandable to
stakeholders.

The 4th principle
states that
engineers must not
deceive others and
must not commit
acts of bribery or
fraud. It also states
engineers should
only endorse
documents whose
subject matter they
are intimately
familiar with

NSPE suggests in
many sections that
an engineer must
not be deceptive or
alter or skew facts.
The SE code is
somewhat less
thorough in this
regard, but
addresses it directly.

Health, Safety,
Well-Being

Minimize risks to
safety, health, and
well-being of
stakeholders.

The SE code of
ethics holds the
health, safety, and
welfare of the public
as its primary
purpose, and the 8
principles are in
service of this
purpose.

The first NSPE
canon is to hold
paramount the well
being of the public.
The fourth is to act
as a trustee to client
and employer. The
SE code is similar,
but puts more
emphasis on the
public good than
that of the employer
than NSPE does.

Property
Ownership

Respect property,
ideas, and
information of
clients and others.

Software Engineers
shall uphold the
best interests of
their client and
employer, while not
engaging in
deceptive activities.

The fourth NSPE
canon is to act as a
faithful trustee to
both employer and
client. The fifth is to
avoid deceptive acts.
In this way the
codes treat these
manners virtually
identically.

34

Sustainability Protect
environment and
natural resources
locally and globally.

Software engineers
shall first and
foremost act in the
best interests of the
public. This
includes an
obligation not to
harm the
environment.

In the NSPE code,
engineers are
encouraged to act in
the interest of
sustainability, but
this tenant is more
prevalent in the SE
code overall.

Social
Responsibility

Produce products
and services that
benefit society and
communities.

Avoid falsifying
details of product,
documents, and
methodologies by
being
truthful,ethical, and
taking
responsibilities of
software
development
concerning public
relations.

The NSPE code goes
into far more detail
about exactly how
an engineer can
communicate with
the public, what
matters they can
communicate over,
what disclaimers to
add, and more. The
SE code makes
simpler, broader
statements in this
regard.

Figure 9: Areas of Responsibility

7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

● Work Competence: This principle does apply to our project because we are
designing a video game that follows the goals that we have set up and what our
clients want from this video game, while fulfilling the objectives that are set from
this course. We expect this project to be picked up by a later team and thus our
code must be well-designed and easy to understand. There are also a lot of
interfaces between modules, especially in the area of the user-facing scripting, and
thus keeping the quality of work high will lessen any integration issues between
modules.

● Financial Responsibility: This principle does not apply to our project in terms of
financially. We are doing the entire project free of cost. Underneath SE Code of
Ethics 5th principle, management, does apply to our project. We will need to be
able to manage our time and access our skills to see if we can manage to complete
the project. For this semester of the project we will be spending time on
researching and learning about our project and what needs to be done to complete
it for the next semester.

35

● Communication Honesty: This principle does apply to our project as we must
not deceive our own team members or our adviser/client about our capabilities or
understanding. Our project group is doing well in this regard, we each have a list of
related experience, and when we notice a deficiency our members gladly take up
learning opportunities. We communicate with each other and our client regularly
and describe any difficulties we’ve encountered.

● Health, Safety, Well-being: This principle somewhat applies to our project, our
game does not have inherent safety risks but we must ensure we don’t stray into
narrative storylines that can affect mental wellbeing. As of right now our project is
doing well in this area, we are moving towards a mentally-stimulating puzzle solver
game.

● Property Ownership: We will not process any users personal information, so
there won’t even be an opportunity to be untrustworthy with clients’ information.
The game is also a low-risk application, so even the most catastrophic failures on
our part would be incredibly unlikely to cause any real harm. Performance: High.

● Sustainability: Since our product is software-only and small-scale, there is little
risk of environmental damage. However, we are still doing what we can to protect
the environment. All the design documents and diagrams are designed and stored
in cloud drive so there is no paper getting used and wasted. Additionally, we will
strive to make the game performant, so that it does not create excessive power use.
The performance of this section: High.

● Social Responsibility: This professional responsibility applies to our project
because as developers of the video game, we are responsible for the information
that is being displayed to the users or the public. Our team is performing highly in
this area of responsibility as we ensure that the information contained in the video
game is valid, correct, and accurate. This allows the users to have faith in our
product and the team behind it.

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

One responsibility that is very important to our project is Social Responsibility. To our
project specifically, we have a responsibility to teach the public proper programming
techniques and paradigms in a real language. Teaching incorrect theory, ineffective
approaches to coding, or a language no one will use are things we consider directly
damaging.

Programmers who learn incorrect or ineffectual techniques will carry incorrect
information forward into their daily lives. We have demonstrated social responsibility by
taking time to consider all of our language options, weighing them against the usefulness
in daily life, and devising puzzles that teach the correct way to use the language as well as
the correct way to use programming in general.

36

8 Closing Material

8.1 DISCUSSION

Our project is not yet complete but we have made excellent progress. We’ve planned a
solid design that fulfills all of our functional requirements. We believe we have a solid plan
for making our game fun and engaging, and we have spent a good amount of time
considering accessibility options. We are on track for fulfilling all of our requirements. We
believe that if this game is successful, it will provide a novel and entertaining option for
people across the world to learn basic programming concepts, something that is becoming
more and more essential in the modern workplace as technology proliferates all we do.

8.2 CONCLUSION

We have come up with unified decisions regarding the game engine (Godot) and
programming language (Python) of choice. We came up with potential storylines and
puzzles to complement the video game. Our goals are to create a flexible language
embedding interface with an implementation for Python, a number of interactive puzzles
teaching basic programming concepts, and a wide variety of UI elements to facilitate this.

We will face a variety of challenges. We will need to implement our language system in a
robust way, we’ll need to design puzzles which are engaging and use it well, and we’ll need
to create a UI that is intuitive, stylish, and helpful to the player along every step of the way.
These are not simple systems, and their implementation will take a lot of careful
development, with regular review and revision.

8.3 REFERENCES

[1]

Godot Engine, “Tutorials and resources,” Godot Engine documentation, 15-Apr-2022.
[Online]. Available: https://docs.godotengine.org/en/3.5/community/tutorials.html.
[Accessed: 23-Apr-2023].

[2]

S. Mukherjee, “Godot Languages Support,” GitHub, Mar. 28, 2023. [Online]. Available:
https://github.com/Vivraan/godot-lang-support. [Accessed: Apr. 23, 2023]

[3]

Unity Technologies, “Unity - Manual: Unity User Manual (2019.2),” Unity3d.com, 2019.
[Online]. Available: https://docs.unity3d.com/Manual/index.html. [Accessed: Apr. 23,
2023]

37

8.4 APPENDICES

Market survey conducted by us: Casters & Coders Survey (Responses)

Language research notes: Language Research Notes

8.5 TEAM CONTRACT

8.5.1 Team Members:

1) Theng Wei Lwe

2) Wenqin Wu

3) Brennan Seymour

4) Branden Butler

5) Max Bromet

6) Edward Dao

8.5.2 Team Procedures

1. Day, time, and location for regular team meetings:

Every Thursday, 2:30p.m. - 3:30p.m. (virtual & face-to-face) Durham 353. Advisor included
in meeting every other week (bi-weekly)

2. Preferred method of communication updates, reminders, issues, and scheduling:

Preferred method will be Discord for simple communication; Face-to-Face for more
involved discussion.

3. Decision-making policy:

Majority vote

4. Procedures for record keeping:

Team members rotate every week to be in charge of meeting minutes. Minutes are
shared/archived through google docs.

8.5.3 Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:
Each individual is expected to attend weekly meetings. Individuals are allowed up to 10
minutes being late. All members are expected to participate and voice opinions during
meetings.

38

https://docs.google.com/spreadsheets/d/1ai91R-nDHZUb97YnxpnYwNc--jnbEZ9GjkO-Oqgc1H0/edit?usp=sharing
https://docs.google.com/document/d/1vYkeamMzOHp6xst0ukT3cYhs_FO4K2rnrch6ZI0BQNM/edit?usp=sharing

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

All team members are expected to fulfill tasks that are assigned, meeting deadlines and
keeping up to date with the timelines.

3. Expected level of communication with other team members:

Each team member is expected to respond to messages in Discord within a day.

4. Expected level of commitment to team decisions and tasks:

Each team member is expected to give 100% commitment towards team decisions and
tasks assigned to them.

8.5.4 Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,

individual component design, testing, etc.):

● Branden Butler: Script embedding and overall system architecture
● Theng Wei Lwe: Ensure team’s keeping up with deadlines
● Edward Dao: Supporting team members working on the game designing

and Unity aspect of the project
● Wenqin Wu: Making sure team members research out the right resources

when faced with an issue.
● Brennan Seymour: Game systems architecture and implementation.

2. Strategies for supporting and guiding the work of all team members:

● Those with more experience should help teach those with less
● Regular check-ins to ensure all team members are on the same page and

aren’t getting stuck.
● Code reviews and at least two approvals for all PRs.

3. Strategies for recognizing the contributions of all team members:

● Keeping track of pushes on Git
● The weekly reports done

8.5.5 Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the
team.

● Branden Butler: Very deep knowledge of programming languages,
significant experience in designing event-driven or message-passing /

39

Actor-based systems. Significant experience with distributed development
and leading small teams

● Edward Dao: Experience in Advance and basic knowledge of java, c, and
c++, experience with leading a small team for web development, experience
in front end and back end development, and little exposure to game design
(not in unity).

● Theng Wei Lwe: Experience with web development frameworks such as
Angular and React. Strong knowledge and experience in Java, JavaScript
and PHP. Full-stack software development work experience.

● Wenqin Wu: Experienced with the game engine we are using, Unity, had
medium level of game development and C#. Medium level of 3D game
development and low level of 2D game development. BrainStorm with
game design. C,C++,Java,database and backend development.

● Brennan Seymour: Thorough knowledge of the Unity game engine, two
games finished and published on Itch.io, many more started and left
unfinished. 4 years of professional web development experience. Even
tempered, ie. chillin’. Some experience with shaders and OpenGL/WebGL
programming.

2. Strategies for encouraging and support contributions and ideas from all team members:

● Mainly communicating through Discord to ask for assistance and
supporting other members.

● Sharing ideas on Discord and the weekly meetings

3. Procedures for identifying and resolving collaboration or inclusion issues

● Through the use of Discord, we have a team server to mainly communicate
with each other. For more private communication we can use direct
messaging.

8.5.6 Goal-Setting, Planning, and Execution

1. Team goals for this semester:

● Successfully set up the development environment.
● Come up with a complete storyboard.
● Create lots of architectural documents & diagrams.
● Design one good puzzle for each of the following programming concepts: if/else,

looping, callbacks.
● Get a working prototype of the scripting system running with the selected

language.

2. Strategies for planning and assigning individual and team work:

● Split tasks up to several categories and assign individuals to each of them

40

● Since we have six members, we’ll assign three goals per week to three
dynamically-allocated pairs. (we’ll write a custom allocator of course)

3. Strategies for keeping on task:

● Weekly meetings to update each member’s task status
● Push changes often and perform code reviews as soon as possible
● Help each other out if stuck.

8.5.7 Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

Members will be held accountable and shall buy food/snacks for the rest of the group, to
be consumed at the next group meeting. ($20)

2. What will your team do if the infractions continue?

Report the offender to the instructor/TA. Frown at them.

8.5.8 Signatures

a) I participated in formulating the standards, roles, and procedures as stated in this
contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) Theng Wei Lwe DATE 2/19/2023

2) Wenqin Wu DATE 2/19/2023

3) Brennan Seymour DATE 2/19/2023

4) Branden Butler DATE 2/19/2023

5) Max Bromet DATE 2/19/2023

6) Edward Dao DATE 2/19/2023

41

