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Motivation and goal
Some people might want to learn basic programming 
with little to no background knowledge, so we set 
out to create a high-fantasy puzzle game which:

● Has coding as a main gameplay mechanic

● Teaches basic programming concepts

● Requires little to no background knowledge

● Is fun to play
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● 2D, Top-Down, sprite-based video game

● User control a sprite character by using their keyboards

● There are rooms with puzzles that the player can solve by writing python scripts

● An editor screen to write scripts

● Scripts will control elements of the environment

Overview

Game Environment Text Editor
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★ Students
★ Teachers
● Educational Institutions
● Technology Industry

Who will benefit from our project?
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Project Management
● We adhere to the agile project management style

● With a video game there were a lot of testing and debugging

● Requirements give us a framework for setting long and short term goals

● Additional features can be dropped and added throughout the project 

● GitHub, User Stories, Sprint Boards, Spring retrospective
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Requirements & Constraints
Functional:
● The player must write scripts to perform actions

● Scripts will interact with puzzles through a 

predetermined API

● The editor must allow the player to write scripts, 

and display available API elements

Resource:
● The game should run at 60 fps on minimum 

specs
● Minimum spec constraints are: 4GB RAM, AMD 

A10-5800k CPU w/ Radeon HD, 10GB HDD 
space

UI:
● The game should be highly accessible

● The game should be fully functional using only a keyboard

● The game should use high contrast colors for the code editor

Qualitative:
● The game should have engaging puzzles
● The game shouldn’t be frustrating

Economic:
● The game should be free and open source
● Only free and self-made assets will be used
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Project Milestones
Engine and Scripting System
● Engine and Scripting Language locked in
● Script API implemented and documented

Story, Environment Design, and Asset Creation
● Completed map design and designs of characters

Puzzle Design
● Learning Pathway completed
● Introductory, Exploratory, and Challenging Puzzles designed

Mechanics of the Game and Level Implementation
● Fully functional player character
● Interactable objects

User Interfaces
● In-game IDE for user input with 

syntax highlighting
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Technical Details

Python

● Easy to use and embed 

● Very common language in real world

● Common beginner language

● Dynamic / Duck typing

● Not prototype-based

SCRIPTING LANGUAGE & GAME ENGINE
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Godot

● Supports many game logic 

languages through bindings

● Result - easy to embed scripting 

languages

● Node system lends itself well to 

our needs

● Use of signals - Straightforward, 

easy to implement



Puzzle Design
PUZZLES

● Major concept in this game

● Users will write scripts that directly affect objects or states in the game.

● Scripts directly control objects in the environment

● Success is measured in traversal, or other world-interaction

○ Traversal is an intuitive way to represent player success and is often used to represent 

player success. 

○ Engaging, interesting, players want to do more
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Godot Node Graph

System Design
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Scripting System Team
● Scripting system architecture enables real time execution and editing of user scripts

● Makes heavy use of Python reflection, closures, and dynamically generated functions

● System is exposed to Godot through the Godot Python bindings

● Puzzle is defined through JSON files
○ Defines the set of inputs and outputs
○ Functions are automatically generated
○ Print functions overridden

● User script source is loaded and compiled
○ Python 3 compiles source to bytecode
○ Compilation checks for syntax errors
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User Interface Team
● Syntax highlighting

● Generated API docs

● Readonly mode

● Prefilled scripts

● On-screen log for stdout & exceptions
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Game Logic Team
● Designed the tilemap, character, objects, object interactions, collision masks & layers

● Implemented the Character movements and overall main dungeon scenes

● Implemented room traversal logic

● Implemented dialog boxes

● Set the base groundwork for having the work from the UI team and Python Scripting System team to be 

easily integrated
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Retrospective — What Has Been Accomplished
● Successfully implemented the game with proof-of-concept round trip

● Fulfilled client’s requirements

● We separated project into 3 sub-branches and each one of them did a good job.

○ Core game logic implemented

○ Interactive UI

○ Working Python Script Manager

● Have an organized repository that is easily manageable
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Retrospective — Next Steps and Game Potential
● Sandboxing/Coding playground

● Integrate a storyline along the way

● Save game progress

● More challenging puzzles (LEET code level)

● Have completed puzzles be levels that can be revisited but with twists (extra 

difficulty)
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Short Game Demo



Q&A


