
Casters & Coders

Advisor/Client: Mat Wymore
By: sddec23-13

Branden Butler Max Bromet
Wenqin Wu Theng Wei Lwe
Edward Dao Brennan Seymour



Motivation and goal
Some people might want to learn basic programming 
with little to no background knowledge, so we set 
out to create a high-fantasy puzzle game which:

● Has coding as a main gameplay mechanic

● Teaches basic programming concepts

● Requires little to no background knowledge

● Is fun to play

1



● 2D, Top-Down, sprite-based video game

● User control a sprite character by using their keyboards

● There are rooms with puzzles that the player can solve by writing python scripts

● An editor screen to write scripts

● Scripts will control elements of the environment

Overview

Game Environment Text Editor
2



★ Students
★ Teachers
● Educational Institutions
● Technology Industry

Who will benefit from our project?

3



Project Management
● We adhere to the agile project management style

● With a video game there were a lot of testing and debugging

● Requirements give us a framework for setting long and short term goals

● Additional features can be dropped and added throughout the project 

● GitHub, User Stories, Sprint Boards, Spring retrospective

4



Requirements & Constraints
Functional:
● The player must write scripts to perform actions

● Scripts will interact with puzzles through a 

predetermined API

● The editor must allow the player to write scripts, 

and display available API elements

Resource:
● The game should run at 60 fps on minimum 

specs
● Minimum spec constraints are: 4GB RAM, AMD 

A10-5800k CPU w/ Radeon HD, 10GB HDD 
space

UI:
● The game should be highly accessible

● The game should be fully functional using only a keyboard

● The game should use high contrast colors for the code editor

Qualitative:
● The game should have engaging puzzles
● The game shouldn’t be frustrating

Economic:
● The game should be free and open source
● Only free and self-made assets will be used

5



Project Milestones
Engine and Scripting System
● Engine and Scripting Language locked in
● Script API implemented and documented

Story, Environment Design, and Asset Creation
● Completed map design and designs of characters

Puzzle Design
● Learning Pathway completed
● Introductory, Exploratory, and Challenging Puzzles designed

Mechanics of the Game and Level Implementation
● Fully functional player character
● Interactable objects

User Interfaces
● In-game IDE for user input with 

syntax highlighting

8



Technical Details

Python

● Easy to use and embed 

● Very common language in real world

● Common beginner language

● Dynamic / Duck typing

● Not prototype-based

SCRIPTING LANGUAGE & GAME ENGINE

6

Godot

● Supports many game logic 

languages through bindings

● Result - easy to embed scripting 

languages

● Node system lends itself well to 

our needs

● Use of signals - Straightforward, 

easy to implement



Puzzle Design
PUZZLES

● Major concept in this game

● Users will write scripts that directly affect objects or states in the game.

● Scripts directly control objects in the environment

● Success is measured in traversal, or other world-interaction

○ Traversal is an intuitive way to represent player success and is often used to represent 

player success. 

○ Engaging, interesting, players want to do more

7



Godot Node Graph

System Design

9



Scripting System Team
● Scripting system architecture enables real time execution and editing of user scripts

● Makes heavy use of Python reflection, closures, and dynamically generated functions

● System is exposed to Godot through the Godot Python bindings

● Puzzle is defined through JSON files
○ Defines the set of inputs and outputs
○ Functions are automatically generated
○ Print functions overridden

● User script source is loaded and compiled
○ Python 3 compiles source to bytecode
○ Compilation checks for syntax errors

11



User Interface Team
● Syntax highlighting

● Generated API docs

● Readonly mode

● Prefilled scripts

● On-screen log for stdout & exceptions

12



Game Logic Team
● Designed the tilemap, character, objects, object interactions, collision masks & layers

● Implemented the Character movements and overall main dungeon scenes

● Implemented room traversal logic

● Implemented dialog boxes

● Set the base groundwork for having the work from the UI team and Python Scripting System team to be 

easily integrated

10



Retrospective — What Has Been Accomplished
● Successfully implemented the game with proof-of-concept round trip

● Fulfilled client’s requirements

● We separated project into 3 sub-branches and each one of them did a good job.

○ Core game logic implemented

○ Interactive UI

○ Working Python Script Manager

● Have an organized repository that is easily manageable

13



Retrospective — Next Steps and Game Potential
● Sandboxing/Coding playground

● Integrate a storyline along the way

● Save game progress

● More challenging puzzles (LEET code level)

● Have completed puzzles be levels that can be revisited but with twists (extra 

difficulty)

14



Short Game Demo



Q&A


