Casters & Coders

Advisor/Client: Mat Wymore
By: sddec23-13

Branden Butler Max Bromet
Wenqgin Wu Theng Wei Lwe
Edward Dao Brennan Seymour

Contact Team Lead at: bseymour@iastate.edu

Problem Statement

Some people might want to learn basic programming
with little to no background knowledge, so we set
out to create a high-fantasy puzzle game which:

e Has coding as a main gameplay mechanic
e Teaches basic programming concepts
® Requires little to no background knowledge

e [sfun to play

Overview

e 2D, Top-Down, sprite-based video game

e User control a sprite character by using their keyboards

e There will be rooms with puzzles that the player can solve by writing python scripts
e An editor screen to write scripts

e Scripts will control elements of the environment

1| gate.open() Exit
2| wait(5)
3| gate.close() Save Script
- o
0 A g say(“Done with gate task!”) Load Script
s s ° .
55 _:""r a Run Script
il 9
l } "ahat 0
& it I
v el s

Available APIs
Standard Gate Crystal

wait(duration: number) gate.open()
say(text: string) gate.close() crystal.clear()

Game Environment Mockup Text Editor Mockup

Project Management

e We will adhere to the agile project management style
o 2 week sprints

o Combined Retro & Planning meeting each sprint

o Two standups a week

o Three working teams of 2

Goals for the semester

e Main Goal : Minimum working game product by the end of the semester (at least 3 puzzles)
o Arithmetic puzzles
o Conditionals
o Loops
e Learn more about agile team development and collaboration
o Standup meetings
o Sprint Planning and Retrospective

o Stories/Tasks sizing and management

Tools and Technologies

EMBEDDED LANGUAGE ENGINE
ﬁ Python - Godot
é e Easy to use and embed Gy ® Supports many game logic
e Very common language in real world languages through bindings
e Common beginner language ® Result - easy to embed scripting
e Dynamic / Duck typing languages
e Not prototype-based e Node system lends itself well to

our needs

Engine and Scripting System

Story, Environment, Design and Asset Creation
Puzzle Design

Mechanics of the Game and Level Implementation

User Interfaces

Scene Project Debug Editor Help

Scene
+ & Fiiter nodes
g

Elp

©0 0000060«

17 Interior
~ % Monk
® shadow
® sprite
O shape
~ O Teleporters
. Teleport g

o Teleport & & &
@ PostProcessing
Camera

Filesystem
<) resu
Search file
- resi//
> B Hud
> B Main
B Menu
> B Resource
>l World
(8 default bus_layout.tres
@ default env.tres
< Icon.png

afo

L
-

Oworld X +

@ 0" B v WA

0

Loader

#hoi

Editor x Game

1,20 %30 K script

> m

% @ 1498% ©

eOutput Debugger Audio Animation

a # & View

T s

' 41014

06:50

> N B & & GLES2
Inspector

E @ O <> o

4 @ PostProcessing it

Filter properties Q
® WorldEnvironment
Environment 0| @ environ

+ Background

Mode O Canvas v
Energy R

Canvas Maxla 0 <
> Ambient Light

> Fog

> Dof Far Blur

> Dof Near Blur

> Glow
~ Adjustments
Enabled O % On
Brightness 1

Contrast 1

Saturation 0 1.1

Color Correctio [empty] v
~ Resource

Local ToScene & On

Path O res:Worldw

Name

O Node

Project Milestones

Engine and Scripting System User Interfaces
e Script API implemented e Fully functional HUD for player
e In-game IDE for user input with
Story, Environment Design, and Asset Creation syntax highlighting
e Completed Simple Storyline e Dialogue boxes

e Completed map design and designs of characters

Puzzle Design

e Create puzzles that teach arithmetic, conditionals, and loops

Mechanics of the Game and Level Implementation
e Fully functional player character
e Interactable objects

Gameplay

PUZZLES

" . Environment-Based
. o Puzzles

e Scripts directly control objects in the environment

e Each script is provided a simplified API to control its attached game object

® Success is measured in area traversal - can you get to the end of the puzzle chamber

Technical Challenges - Scripting System

e Integration between the user script and the world objects
o APl is easy to use and understand from the user POV
m Allows a smooth introduction to Python
o Ensure game object state is synchronized with what the script sees
e Script “bookkeeping”
o Ensure script states don’t leak out
m A script should not be able to see objects or variables from previously-ran scripts
o Track script files and map them to in-game “scrolls”
o Ensure buggy scripts don’t crash the game
m Return useful error messages

o Sync editor with backend script files

Scripting System Design

Godot Node Graph

Node2D
1

(]

Execute Script Code
Explore and Interact Interact with Environment Provide Puzzle object details

with Environment Environment (—J | I ¢

1
$ »| Scripting Manager Script Interpreter

1 1

A’A\

Puzzle Room " AT
1 Load script code Request ost-side
Environment
Request script execution Interaction 38(f’;ztzlgls
and provide puzzle info object detai

Select script) Script Filestore
Inventory P Scroll Recepticle ¥

: 11

Sync Script Names

Script to Game
Engine Translation Y

Load scripts and save edits Script-side API Lib

Script Editor

Script-Side

Technical Challenges - Ul

e IDE
o Offer information about available functions from the scripting API for each puzzle
o Provide rudimentary syntax highlighting
o Time permitting, present basic completions
o Allow saving + loading scripts
e Dialogue Boxes
o Show dialogue from NPCs
o Allow basic response selection

o Define dialogue paths with YAML files

Technical Challenges - Game Logic

e Provide game progress saving & loading

e Add some basic settings (volume, etc.)

e Manage scene loading / unloading as players walk between rooms

e Consume interfaces from Scripting Engine to allow player-made scripts to control game objects

e Create developer tools as necessary

THANK YOU

