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Problem Statement

Some people might want to learn basic programming
with little to no background knowledge, so we set
out to create a high-fantasy puzzle game which:

e Has coding as a main gameplay mechanic
e Teaches basic programming concepts
® Requires little to no background knowledge

e [sfun to play




Overview

e 2D, Top-Down, sprite-based video game

e User control a sprite character by using their keyboards

e There will be rooms with puzzles that the player can solve by writing python scripts
e An editor screen to write scripts

e Scripts will control elements of the environment
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Available APIs
Standard Gate Crystal

wait(duration: number) gate.open()
say(text: string) gate.close() crystal.clear()

Game Environment Mockup Text Editor Mockup



Project Management

e We will adhere to the agile project management style
o 2 week sprints

o Combined Retro & Planning meeting each sprint

o Two standups a week

o Three working teams of 2



Goals for the semester

e Main Goal : Minimum working game product by the end of the semester (at least 3 puzzles)
o Arithmetic puzzles
o Conditionals
o  Loops
e Learn more about agile team development and collaboration
o  Standup meetings
o  Sprint Planning and Retrospective

o  Stories/Tasks sizing and management



Tools and Technologies

EMBEDDED LANGUAGE ENGINE
ﬁ Python - Godot
é e Easy to use and embed Gy ®  Supports many game logic
e Very common language in real world languages through bindings
e  Common beginner language ® Result - easy to embed scripting
e Dynamic / Duck typing languages
e  Not prototype-based e Node system lends itself well to

our needs



Engine and Scripting System

Story, Environment, Design and Asset Creation
Puzzle Design

Mechanics of the Game and Level Implementation

User Interfaces
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Project Milestones

Engine and Scripting System User Interfaces
e Script API implemented e Fully functional HUD for player
e In-game IDE for user input with
Story, Environment Design, and Asset Creation syntax highlighting
e Completed Simple Storyline e Dialogue boxes

e Completed map design and designs of characters

Puzzle Design

e Create puzzles that teach arithmetic, conditionals, and loops

Mechanics of the Game and Level Implementation
e Fully functional player character
e Interactable objects



Gameplay

PUZZLES

" . Environment-Based
. o Puzzles

e Scripts directly control objects in the environment

e Each script is provided a simplified API to control its attached game object

® Success is measured in area traversal - can you get to the end of the puzzle chamber



Technical Challenges - Scripting System

e Integration between the user script and the world objects
o APl is easy to use and understand from the user POV
m  Allows a smooth introduction to Python
o  Ensure game object state is synchronized with what the script sees
e  Script “bookkeeping”
o  Ensure script states don’t leak out
m A script should not be able to see objects or variables from previously-ran scripts
o Track script files and map them to in-game “scrolls”
o  Ensure buggy scripts don’t crash the game
m  Return useful error messages

o  Sync editor with backend script files



Scripting System Design
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Technical Challenges - Ul

e IDE
o  Offer information about available functions from the scripting API for each puzzle
o  Provide rudimentary syntax highlighting
o  Time permitting, present basic completions
o  Allow saving + loading scripts
e Dialogue Boxes
o  Show dialogue from NPCs
o  Allow basic response selection

o Define dialogue paths with YAML files



Technical Challenges - Game Logic

e Provide game progress saving & loading

e Add some basic settings (volume, etc.)

e  Manage scene loading / unloading as players walk between rooms

e Consume interfaces from Scripting Engine to allow player-made scripts to control game objects

e Create developer tools as necessary



THANK YOU



